Chem. Ber. 113, 278-288 (1980)

Fluorenylsilane, I

Darstellung und Strukturuntersuchung von Fluorenylsilanen mit funktionellen Gruppen am Silicium

Alfred Rengstl und Ulrich Schubert*

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching

Eingegangen am 9. April 1979

Chlor-9-fluorenyldiphenylsilan (3a) und 9-Fluorenyltris(trimethylsily)silan (3b) wurden durch Umsetzung der entsprechenden Halogensilane mit 9-Fluorenyllithium dargestellt. Der Chlorsubstituent in 3a läßt sich gegen andere funktionelle Gruppen austauschen; im alkalischen Medium kann daneben die Fluoren-Silicium-Bindung gespalten werden. Von 3b und 9-Fluorenyldiphenylsilanol (6a) wurden Röntgenstrukturanalysen durchgeführt. In beiden Verbindungen stehen die Substituenten bezüglich der C_{Fluorenyl}-Si-Bindung streng gestaffelt. Der Fluorenyl-Rest in 3b ist leicht gefaltet, die C_{Fluorenyl}-Si-Bindung auf 194.7 (4) pm aufgeweitet.

Fluorenylsilanes, I

Preparation and Structural Investigations of Fluorenylsilanes with Functional Groups at Silicon

Chloro-9-fluorenyldiphenylsilane (3a) and 9-fluorenyltris(trimethylsilyl)silane (3b) have been prepared by the reaction of the corresponding halosilanes with 9-fluorenyl lithium. The chloro substituent in 3a can be exchanged for other functional groups. With alkaline conditions cleavage of the fluorenyl-silicon bond may happen. The molecular structures of 3b and 9-fluorenyldiphenylsilanole (6a) have been determined by X-ray diffraction. In both compounds the substituents at the $C_{fluorenyl}$ -Si bond are exactly staggered. The fluorenyl group in 3b is slightly folded, the $C_{fluorenyl}$ -Si bond is lengthened to 194.7 (4) pm.

Silaolefine, $R_2Si = CR'_2$, sind bisher nur als mehr oder weniger kurzlebige Zwischenstufen bekannt¹⁾. Ihrer Isolierung steht die hohe Reaktivität entgegen, die nach theoretischen Untersuchungen²⁾ auf ihren stark dipolaren Charakter zurückzuführen ist (Resonanzform **B**) und die bei Abwesenheit von Abfangreagentien in der Regel zu 1,3-Disilacyclobutanen führt.

$$\begin{array}{ccc} R_2 Si = CR_2' & \longleftrightarrow & R_2 Si = \bar{C}R_2' \\ A & B \end{array}$$

Unter Normalbedingungen isolierbare Silaolefine sollten darstellbar sein, wenn durch Substituenten ausreichende kinetische und/oder thermodynamische Stabilisierung erzielt werden kann. *Ustynyuk* et al.^{2b)} haben vorhergesagt, daß Silafulven ein geeigneter Grundkörper für derartige Untersuchungen sein könnte. Diese Prognose sowie die Tatsache, daß Fluorenyliden-Ylide des Phosphors und Schwefels zu den stabilsten Vertretern dieser

```
© Verlag Chemie, GmbH, D-6940 Weinheim, 1980
```

 $0009-2940/80/0101-0278 \ \ 02.50/0$

Verbindungsklassen gehören³⁾, haben uns ermutigt, die Synthese solcher Silaolefine in Angriff zu nehmen, in denen die negative (Partial-)Ladung der Resonanzform B durch ein Fluorenyliden-System delokalisiert wird.

In dieser Arbeit beschreiben wir die Synthesen und Eigenschaften von Fluorenylsilanen, die wir dann mittels geeigneter Eliminierungsreaktionen⁴⁻⁶) in die entsprechenden Silaolefine überführen wollen. Bisherige Untersuchungen an 9-Silylfluorenen haben sich auf 9-(Trimethylsilyl)fluorene beschränkt^{7)*1}, die für unsere Zwecke ungeeignet sind. Als Substituenten am Silicium haben wir zunächst neben verschiedenen Abgangsgruppen Phenyl- und Silvlreste gewählt.

Darstellung

Die Fluorenylsilane 3 wurden dargestellt, indem zu einer stark verdünnten Lösung des entsprechenden Chlorsilans 2 in Ether oder Tetrahydrofuran eine Lösung von Fluorenyllithium in Tetrahydrofuran getropft wurde [Gl. (1)].

$$[C_{13}H_{9}]Li + R^{1}R_{2}^{2}SiX \longrightarrow C_{13}H_{9}-SiR^{1}R_{2}^{2} + LiX$$
(1)

$$1 \quad 2 \quad 3$$

$$(C_{13}H_{9} = 9-Fluorenyl) \qquad \frac{2, 3}{a} \begin{array}{c} R^{1} \quad R^{2} \quad X \\ \hline \\ & 2 \\ \hline \\ & 2 \\ \hline \\ & 3 \end{array}$$

$$(C_{13}H_{9})Ph_{2}SiX \qquad \frac{2, 3}{a} \begin{array}{c} R^{1} \quad R^{2} \quad X \\ \hline \\ & C_{6}H_{5} \quad Cl \\ \hline \\ & 5iMe_{3} \quad SiMe_{3} \quad Br \end{array}$$

$$(C_{13}H_{9})Ph_{2}SiX \qquad \frac{4: X = H}{b: SiMe_{3} \quad SiMe_{3} \quad Br}$$

$$(C_{13}H_{9})Ph_{2}SiX \qquad \frac{4: X = H}{b: SiMe_{3} \quad SiMe_{3} \quad Br}$$

$$(C_{13}H_{9})Ph_{2}SiX \qquad \frac{4: X = H}{b: SiMe_{3} \quad SiMe_{3} \quad Br}$$

$$(C_{13}H_{9})Ph_{2}SiX \qquad \frac{4: X = H}{b: X = OTos} \qquad 6a: X = OH \qquad b: X = OC_{2}H_{5} \qquad 6b + NaOC_{2}H_{5} \quad C_{13}H_{10} + (Ph)_{2}Si(OC_{2}H_{5})_{2} \qquad (2)$$

$$3a + \bigvee_{O}^{O} NBr \quad \longrightarrow \qquad \bigvee_{O}^{O} SiPh_{2}Cl} + \bigvee_{O}^{O} NH \qquad (3)$$

Von Fluorenyltrimethylsilanen ist bekannt, daß die Fluoren-Silicium-Bindung leicht gespalten werden kann⁷⁾. Am Beispiel des Chlorsilans **3a** haben wir untersucht, unter welchen Bedingungen der Chlor-Substituent gegen andere Gruppen ausgetauscht werden kann, ohne das Grundgerüst der Verbindung zu zerstören.

ð

Mit Lithiumaluminiumhydrid in Tetrahydrofuran läßt sich 3a in sehr guten Ausbeuten zu 4 hydrieren, mit Silber-p-toluolsulfonat bei 50° C in Tetrahydrofuran 9-Fluorenyl-

^{*)} Anmerkung bei der Korrektur (11.9.1979). Inzwischen wurden unabhängig von uns auf anderem Weg 9-Fluorenyldi(tert-butyl)silan und Brom-9-fluorenyldi(tert-butyl)silan dargestellt: T. J. Barton und C. R. Tully, J. Organomet. Chem. 172, 11 (1979).

diphenyl-p-toluolsulfonylsilan (5) darstellen. Gegen Wasser und Alkohole ist das Chlorsilan **3a** erstaunlich beständig. Bei höherer Temperatur erfolgt langsam Hydrolyse bzw. Alkoholyse unter Bildung des Silanols **6a** bzw. des Alkoxysilans **6b**. Rascher und quantitativ erhält man **6b**, wenn man **3a** mit einer äquimolaren Menge Natriumethylat in Tetrahydrofuran/Ethanol 12 Stunden bei Raumtemperatur reagieren läßt. Verwendet man dagegen einen Überschuß an Alkoholat, wird nicht nur Chlorid durch Alkoxid substituiert, sondern auch die Fluoren-Silicium-Bindung unter Bildung von Fluoren und Diphenyldiethoxysilan gespalten [Gl. (2)].

3a kann nicht nur durch Substitution der funktionellen Gruppe am Silicium modifiziert werden, sondern auch durch Reaktion des Wasserstoffatoms an C-9 des Fluorenyl-Restes. Dieses läßt sich z. B. durch *N*-Bromsuccinimid gegen Brom austauschen unter Bildung des 9-Bromfluoren-Derivates 7.

Erste weiterführende Versuche haben gezeigt, daß sich selbst bei -78 °C aus **3a** mit sterisch gehinderten Aminen (z. B. 1,5-Diazabicyclo[5.4.0]undec-5-en) quantitativ Chlor-wasserstoff abspalten läßt. Darüber wird später berichtet werden.

Physikalische und spektroskopische Eigenschaften

Die neu dargestellten Silane 3-6 sind wenig temperatur- und luftempfindliche, farblose bis blaßgelbe Feststoffe, 7 ein orangefarbenes Öl, von denen sich 3a, 4, 5 und 6 nur in polaren, 3b und 7 auch in unpolaren Lösungsmitteln gut lösen.

Ihre ¹*H-NMR-Spektren* (CCl₄) sind wenig aussagekräftig: Bei den diphenylsubstituierten Silanen wird das breite Multiplett des Fluorenylrestes ($\delta = 6.8 - 8.0$) von einem Singulett bei

Flu - R	[M]+	[N - Fiu]*	Abspaltung anderer Gruppen von Si	andere Si-haltige Fragmente	sonstige
R=Si(SiNe ₃) ₃ (<u>3</u> <u>b</u>)	412(11%)	247(81%)	339(5%) [M-SiHe ₃] ⁺ 324(5%) [M-SiHe ₃] ⁺ 266(8%) [H-2SiHe ₃] ⁺	173(100%) [C ₆ H ₁₇ S1 ₃] ⁺ 73(58%) [SiNe ₃] ⁺	165(10%) [Flu] ⁺
R=SiPh ₂ Cl (<u>Za</u>)	382(15%)	217 (100,3)		181(11%) [0 ₁₂ H ₉ Si] ⁺ 139(6%) [0 ₆ H ₄ ClSi] ⁺	239(2%)?(Cl-haltig 165(15%) [Flu] ⁺
R=SiPh2H (<u>4</u>)	348(34%)	183(100%)	271(3%) [E-FF] ⁺	105(32%) [0 ₆ H ₅ Si] ⁺	241(5%) [C ₁₉ H ₁₃] ⁺ 165(22%) [Flu] ⁺
R=SiPh ₂ OTos (5)	518 (ፈ1%)	353(50%)	36⊄(9%) [N-2Fh] ⁺	273(7%) [SiPh ₂ Tol] ⁺ 199(100%) [SiOTom] ⁺ 105(1%) [d ₆ H ₅ Si] ⁺	165(3%) [Flu] ⁺
k=SiFh ₂ OR (<u>€a</u>)	366(28%) [M+2H] ⁺	201 (100%)		183(15%) [C ₁₂ H ₁₁ Si] ⁺	243(2%) ? 165(41%) [Flu] ⁺
R=SiTh20St (<u>6</u> b)	392 (7%)	227(100%)	347(1%) [N-OEt]*	183(50%) [C ₁₂ H ₁₁ Si] ⁺	199(2%) [C ₁₄ H ₁₅ 0] ⁺ 165(8%) [Flu] ⁺ 123(3%) [C ₂ H.0] ⁺
C ₁₃ H ₈ Br-SiPh ₂ Cl (<u>7</u>)	461(17%) [№н] ⁺	217(100%) [E-C ₁₃ H ₈ Br] ⁺	346(3%) [М-НВг-С1] ⁺ 304(5%) [К-НВг-Гh] ⁺ 269(5%) [С ₁₃ Н ₈ Sirh] ⁺	581(4%) [E-HBr] ⁺ 181(20%) [C ₁₂ H ₉ Si] ⁺	241(81%) [C ₁₃ H ₈ Br] 164(28%) [C ₁₃ H ₈] ⁺

Tab. 1. Massenspektren der Fluorenylsilane 3-7. Nur Fragmente mit Intensitäten größer 1% und *m/e* größer 100 sind aufgeführt (Flu = $C_{1,3}H_9$) (Varian MAT 311 A, 70 eV, Quellentemp. 90 – 120°C)

Fluorenylsilane, I

ca. $\delta = 7.3$ für die Phenylprotonen überlagert. Das Singulett (bei 4: Dublett) des Methin-Protons am C-9-Atom des Fluorenylrestes tritt bei 4.5-4.9 ppm auf (bei 3b: 4.25 ppm); die Signale der Protonen der funktionellen Gruppen finden sich in den üblichen Bereichen [δ (SiMe₃) = 0.0 (3b); δ (SiH) = 5.08 (d, J = 3 Hz) (4); δ (CH₃) = 2.30 (5); δ (C₂H₅) = 3.70 (q), 1.15 (t) (6b)]. Das Signal des OH-Protons von 6a wird in CCl₄ nicht beobachtet. In [D₆]Benzol ist seine Lage abhängig von der Konzentration der Lösung. Das bei gesättigter Lösung bei $\delta = 1.85$ zu beobachtende Signal wird bei Verdünnung zu höherem Feld verschoben. Dieses Verhalten deutet darauf hin, daß 6a in Lösung über Wasserstoffbrücken assoziiert vorliegt.

Die *IR-Spektren* von 3-7 zeigen im Bereich von $4000-600 \text{ cm}^{-1}$ neben den für die funktionellen Gruppen typischen Banden (4: Si-H 2160 cm⁻¹, KBr) bei den Phenylsilanen 3a und 4-7 bei ca. 1430 und 1070 die für Si-C₆H₅ bzw. bei 3b bei 1240 cm⁻¹ die für Si-CH₃ charakteristischen Schwingungen⁸⁾.

In den Massenspektren von Organosilicium-Verbindungen sind hauptsächlich silicium-haltige Fragmente zu beobachten, da das Siliciumatom bevorzugt die positive Ladung trägt⁹⁾. Bei 3–7 (Tab. 1) dominiert die Abspaltung des Fluorenylrestes aus dem Molekül-Ion, während Ionen, die durch primäre Abspaltung anderer Gruppen vom Silicium entstehen, weniger stabil sind. Die Tatsache, daß stets auch die für Fluoren typischen Peaks zu beobachten sind, deutet darauf hin, daß die Verbindungen im Massenspektrometer teilweise thermischem Zerfall unterliegen. Aufeinanderfolgende Abspaltung eines Br- und Cl-Radikals führt bei 7 unter den Bedingungen der Massenspektrometrie zum Silaolefin $H_8C_{13}=SiPh_2$ (m/e = 346); entsprechende Fragmentierungen bei 3-6 können wegen der geringen Intensität der fraglichen Peaks nicht sicher beobachtet werden.

Molekülstrukturen von 3b und 6a

Zellparameter: **3b**: triklin, $P\overline{1}$ (Z = 2), a = 962.7(11), b = 1021.7(11), c = 1823.0(25) pm, $\alpha = 99.3^{\circ}(1)$, $\beta = 115.70^{\circ}(8)$, $\gamma = 116.73^{\circ}(8)$; $V = 1294 \cdot 10^{6}$ pm³, $d_{ber.} = 1.06$ g/cm³. **6a**: monoklin, $P2_1$ (Z = 4), a = 1029(2), b = 1928(5), c = 987(1) pm, $\beta = 96.58^{\circ}(13)$; V = 1029(2), b = 1928(5), c = 987(1) pm, $\beta = 96.58^{\circ}(13)$; V = 1029(2), b = 1928(5), c = 987(1) pm, $\beta = 96.58^{\circ}(13)$; V = 1029(2), b = 1928(5), c = 987(1) pm, $\beta = 96.58^{\circ}(13)$; V = 1029(2), b = 1

 $1945 \cdot 10^6 \text{ pm}^3$, $d_{\text{ber.}} = 1.09 \text{ g/cm}^3$.

Die Intensitätsmessungen erfolgten auf einem Syntex-P2₁-Vierkreisdiffraktometer mit Mo- K_3 -Strahlung (Graphit-Monochromator, $\lambda = 71.069 \text{ pm}$) (**3b** 4126, **6a** 2821 unabhängige Reflexe). Die Strukturen wurden durch MULTAN (Syntex XTL) gelöst und nach der Methode der kleinsten Quadrate mit der vollständigen Matrix verfeinert. **3b**: $R_1 = R_2 = 0.057$, 3016 Strukturfaktoren ($F_o \ge 4.1 \sigma$, $2^\circ \le 2\Theta \le 50^\circ$). **6a**: $R_1 = R_2 = 0.076$, 2330 Strukturfaktoren ($F_o \ge 4.0 \sigma$, $2^\circ \le 2\Theta \le 46^\circ$).

In Tab. 2 und 3 sind die Atomparameter wiedergegeben. Die Temperaturfaktoren sind definiert durch $T = \exp[-\frac{1}{4}(h^2a^{*2}B_{11} + k^2b^{*2}B_{22} + l^2c^{*2}B_{33} + 2hka^*b^*B_{12} + 2hla^*c^*B_{13} + 2klb^*c^*B_{23})]$ (B_{ij} in 10⁴ · pm²). Abb. 1 und 2 zeigen Ansichten der Verbindungen. In Tab. 4 sind einander entsprechende Abstände und Winkel von 3b und den beiden unabhängigen Molekülen von 6a einander gegenübergestellt.

Die Konformationen, Bindungsabstände und -winkel der beiden Moleküle in der asymmetrischen Einheit von **6a** unterscheiden sich nicht signifikant voneinander (s. Tab. 4); in der folgenden Diskussion werden Mittelwerte verwendet. **3b** und **6a** besitzen nichtkristallographische Spiegelebenen durch die Mitte des Fluorenyl-Restes, Si 1 und Si4 bzw. O 1. Daraus ergibt sich, daß die Anordnung der Substituenten an der C9 – Si 1-Bindung fast ideal gestaffelt ist, wobei das Wasserstoffatom an C9 und die OH-Gruppe (**6a**) bzw. ein Trimethylsilyl-Rest (**3b**) an Si 1 *trans*-ständig zueinander sind. Diese Konformation vermindert die sterische Wechselwirkung zwischen den Phenyl- bzw. Trimethylsilyl-Gruppen am Silicium und dem Fluorenyl-Rest auf ein Minimum und sollte daher auch

Abb. 1. Molekülstruktur von 9-Fluorenyltris(trimethylsilyl)silan (3b). Die Wasserstoffatome wurden nicht gezeichnet

Abb. 2. Ansicht einer asymmetrischen Einheit in kristallinem **6a**. Die Wasserstoffatome wurden der besseren Übersichtlichkeit halber nicht gezeichnet. O1 und O2 sind durch Wasserstoffbrücken miteinander verbunden

bei den anderen Fluorenylsilanen 3-7 und in Lösung begünstigt sein. Dieser Gesichtspunkt ist besonders im Hinblick auf die von uns geplanten Eliminierungsreaktionen (s. Einleitung) von Interesse, da bimolekulare Eliminierungen bekanntlich besonders glatt verlaufen, wenn die abzuspaltenden Substituenten in voller *trans*-Lage zueinander stehen¹⁰.

Abstände und Winkel in den Fluorenyl-Resten von 3b und 6a unterscheiden sich nicht wesentlich von denen in Fluoren¹¹⁾ bzw. in anderen kristallographisch untersuchten

Atom	x/a	у/	Ъ	z/c	^B 11	B22	B33	^B 12	B ₁₃	В
C1	0.3175(5)	1.019	4(4) 0.4	4332(2)	3.0(2)	3.4(2)	3.1(2)	2,0(2)	1.5(1)	1.4
02	0.2031(6)	0.911	D(4) D.	4519(2)	3.5(2)	4.3(2)	3.8(2)	2.2(2)	1.8(2)	1.0
C3	0.1893(6)	0.970	5(6) 0.	5198(3)	4.7(2)	6.9(3)	4.8(2)	3.6(2)	3.3(2)	3.3
C4	0.2854(7)	1.133	9(6) 0.	5693(3)	6.1(3)	7.4(3)	4.7(2)	4.7(3)	3.4(2)	2.
C5	0.4061(6)	1.245	4(5) 0.	5544(3)	5.1(3)	4.6(2)	4.1(2)	3.4(2)	2.0(2)	1.1
¢6	0,4221(5)	1,188	4(4) 0.	4860(2)	3.4(2)	4.0(2)	3.5(2)	2.5(2)	1.4(2)	1.1
C7	0.5412(6)	1.273	7(5) 0.	4583(3)	3.5(2)	4.0(2)	4.0(2)	2.2(2)	1.2(2)	1.8
08	0.5156(6)	1.159	9(5) 0,	3904(2)	3.4(2)	4.4(2)	3.8(2)	2.4(2)	1.9(2)	2.4
U9	0.3582(5)	0,990	2(4) 0.	3640(2)	3.4(2)	3.6(2)	3.5(2)	2.3(2)	1.9(2)	1.1
C10	0.6285(7)	1,212	6(5) 0.	3599(3)	4.6(2)	6.6(3)	5.0(2)	3.2(2)	2.7(2)	3.
C11	0.7585(7)	1.379	4(8) 0.	3927(4)	4.6(3)	7.9(3)	8.9(3)	2.7(3)	4.2(3)	5.8
012	0,7761(8)	1.490	0(6) 0.	4569(4)	5.0(3)	4.6(3)	8.5(3)	1.0(2)	2.6(3)	3.
C13	0.6718(7)	1.440	5(5) 0.	4904(3)	4.7(3)	3.5(2)	6.1(2)	1.6(2)	2.1(2)	1.8
Si1	0.1376(2)	0.891	7(1) 0.	2406(1)	3.91(6)	3.84(5)	3.04(5)	2.41(5)	1.71(4)	1.3
Si2	0.2186(2)	0.865	0(2) 0.	1363(1)	6,9(1)	7,6(1)	4.2(1)	4.3(1)	3.5(1)	2.
Si 3	-0,1019(2)	0.625	1(1) 0.	2051(1)	4.62(7)	3.72(5)	4.94(6)	2.01(5)	2,25(5)	1.1
Si4	0.0257(2)	1.055	6(1) C.	2275(1)	4.82(7)	5.04(6)	4.08(5)	3.43(5)	1.89(5)	2.
C14	0.3596(10)	1.055	1(7) 0.	1310(4)	12.3(5)	12.1(4)	7.1(3)	5.7(4)	7.0(3)	5.0
015	0.0027(9)	0.734	6(7) 0.	0183(3)	9.1(4)	12.6(4)	4.7(3)	5.0(4)	3.7(3)	2.
C16	0.3474(9)	0.768	7(7) 0.	1627(4)	11.3(5)	11.9(4)	9.0(3)	8.3(4)	7.3(4)	3.1
C17	-0.2696(8)	0.485	8 (6) 0.	0819(3)	8.7(4)	6.6(3)	6.6(3)	1.0(3)	2.9(3)	0.
C18	-0.2540(7)	0.624	1(5) 0.	2414(3)	4.9(3)	5.7(2)	7.5(3)	2.6(2)	3.4(2)	2.
C19	0.0120(8)	0,528	2(5) 0.	2578(4)	8.4(4)	5.6(3)	10.4(3)	4.8(3)	6.0(3)	4.
C20	-0.1961(8)	0.949	4(6) 0.	1120(3)	7.8(3)	10.0(3)	5,2(2)	6.2(3)	2,1(2)	3.
C21	0.2044(8)	1.258	3(6) 0.	2446(3)	8.6(4)	6.2(3)	8.8(3)	5.3(3)	4.8(3)	4.
C22	-0.0349(7)	1.090	9(5) 0.	3090(3)	6,5(3)	6.6(3)	6.5(2)	4.8(2)	3.2(2)	2.
	Atom	x/a	y/b	z/c	В	Atom	x/a	у/Ъ	z/c	в
	H2 (0.1331	0.7951	0.4167	4.5	H171	-0,3344	0,5322	0.0551	6.0
	НЗ (0.1063	0.8947	0.5331	4.5	H172	-0.3564	0.3777	0.0642	6.0
	H4	0.2778	1 .1 757	0.6170	4.5	H173	-0,2026	0.4885	0,0518	6.0
	Н5	0.4733	1.3624	0,5903	4.5	H181	0.3292	0.5200	0.2384	6.0
	Н9	0.3921	0.9135	0.3630	4.5	H182	-0.1790	0.7046	0.3046	6.0
	H10	0.6147	1.1340	0.3128	3 4.5	H183	-0.3377	0.6493	0.2061	6.0
	H11	0.8493	1.4239	0.3748	3 4.5	H191	0.0814	0,5775	0.3227	6.0
	H12	0.8663	1.6052	0.474	3 4.5	H192	-0.0735	0.4141	0,2344	6,0
	H13	0.6914	1.5267	0.5368	3 4.5	H193	0.1090	0.5435	0.2456	6.0
	H141	0,2888	1.1075	0.121	5 6.0	H2O1	-0.2946	0.8560	0.1072	6.0
	H142	0,4845	1.1438	0,186	1 6.0	H202	-0.2349	1.0177	0.0982	6.0
	H143	0.3748	1,0483	0.082	4 6.0	H203	-0.1802	0.9112	0.0657	6.0
	H151	0.0293	0.6644	-0.005	5 6.0	H211	0.2305	1.2414	0.1998	6.0

Tab. 2. Atomparameter von 3b

H163

H152

H153

H161

H162

-0.1222

-0.0340

0.4752

0.6503

0.7757

0.8469

0.3563 0.7365

0.2872 0.6769

0.0080 6.0

-0.0239 6.0

0.1061 6.0

6.0

0.2096 6.0

0.1800

H212

H213

H221

H222

H223

0.1575

0.3202

-0.0676

-0.1382

0.0720

1.3241 0.2361

0.3030

0.3046

0.2966

0.3695

1,3183

1.1665

0.9915

1.1362

6.0

6.0

6.0

6.0

6.0

S11 01 020 021 023 024 025 030 031 032 033 034 035 01 02 03 03 03 03 03 03 03 03 03 03 03 03 03	0.11089(25) 0.1256(6) -0.052(1) -0.152(1) -0.280(1) -0.280(1) -0.229(1) 0.229(1) 0.217(1) 0.229(1) 0.314(1) 0.356(1) 0.369(1) 0.289(1) 0.0867(8) -0.045(1) -0.092(1) -0.092(1) -0.094(1)	0.58350(0) 0.5536(3) 0.610(1) 0.613(1) 0.638(1) 0.655(1) 0.655(1) 0.627(1) 0.627(1) 0.627(1) 0.750(1) 0.775(1) 0.745(1) 0.646(1) 0.435(1)	0.06616(25 -0.0856(6) 0.081(1) -0.016(1) 0.099(1) 0.208(1) 0.100(1) 0.223(1) 0.155(1) 0.023(1) 0.023(1) 0.002(1) 0.169(8)	3.3(2) 5.1(2) 6.5(3) 6.7(3) 7.9(4) 5.6(3) 5.1(2) 5.5(3) 6.5(3) 6.3(3) 5.1(3)	H2 H3 H4 H5 H9 H10 H11 H12 H13 H21 H22 H23	-0.1053 -0.1854 -0.0505 0.1790 0.1487 0.4255 0.6197 0.6084 0.4107 -0.1377 -0.3434	0.4659 0.3586 0.2716 0.2903 0.5312 0.5737 0.5177 0.3986 0.3404 0.5955 0.6458	0.1933 0.1262 0.0598 0.0588 0.2761 0.2317 0.1859 0.1003 0.0669 -0.1227 -0.0955
01 020 021 022 023 024 025 030 031 032 033 034 035 034 035 03 03 03 03 03 03 03 03 03	0.1256(6) -0.052(1) -0.152(1) -0.280(1) -0.280(1) -0.229(1) 0.229(1) 0.217(1) 0.217(1) 0.314(1) 0.385(1) 0.369(1) 0.369(1) 0.369(1) 0.369(1) 0.369(1) -0.045(1) -0.014(1)	0.5536(3) 0.610(1) 0.633(1) 0.638(1) 0.655(1) 0.655(1) 0.627(1) 0.627(1) 0.627(1) 0.750(1) 0.775(1) 0.745(1) 0.686(1) 0.435(1)	-0.0856(6) 0.081(1) -0.034(1) -0.016(1) 0.099(1) 0.208(1) 0.100(1) 0.223(1) 0.023(1) 0.023(1) 0.002(1) 0.169(8)	3.3(2) 5.1(2) 6.5(3) 6.7(3) 7.9(4) 5.6(3) 3.1(2) 5.5(3) 6.5(3) 6.3(3) 5.1(3)	H3 H4 H5 H9 H10 H11 H12 H13 H21 H22 H23	-0.1854 -0.0505 0.1790 0.1487 0.4255 0.6197 0.6084 0.4107 -0.1377 -0.3434	0.3586 0.2716 0.2903 0.5312 0.5737 0.5177 0.3986 0.3404 0.5955 0.6458	0.1262 0.0598 0.2761 0.2317 0.1859 0.1003 0.0669 -0.1227 -0.0955
220 321 322 323 324 325 330 331 332 333 334 335 31 32 33 334 31 32 33 334 335 334 335 334 335 334	-0.062(1) -0.154(1) -0.280(1) -0.280(1) -0.229(1) -0.099(1) 0.229(1) 0.314(1) 0.385(1) 0.369(1) 0.369(1) 0.289(1) 0.0867(8) -0.045(1) -0.092(1) -0.014(1)	0.610(1) 0.613(1) 0.638(1) 0.655(1) 0.655(1) 0.627(1) 0.660(1) 0.705(1) 0.775(1) 0.745(1) 0.686(1) 0.435(1)	0.081(1) -0.034(1) -0.016(1) 0.099(1) 0.214(1) 0.208(1) 0.223(1) 0.254(1) 0.254(1) 0.254(1) 0.023(1) 0.002(1) 0.1669(8)	3.3(2) 5.1(2) 6.5(3) 6.7(3) 7.9(4) 5.6(3) 3.1(2) 5.5(3) 6.5(3) 6.3(3) 5.1(3)	H4 H5 H9 H10 H11 H12 H13 H21 H22 H23	-0.0505 0.1790 0.1487 0.4255 0.6197 0.6084 0.4107 -0.1377 -0.3434	0.2716 0.2903 0.5312 0.5737 0.5177 0.3986 0.3404 0.5955 0.6458	0.0598 0.0588 0.2761 0.2317 0.1859 0.1003 0.0669 -0.1227 -0.0955
021 022 023 024 025 030 0331 032 034 035 01 01 02 03 034 035 034	-0.154(1) -0.280(1) -0.280(1) -0.229(1) -0.299(1) 0.217(1) 0.217(1) 0.314(1) 0.356(1) 0.289(1) 0.289(1) 0.0667(8) -0.045(1) -0.092(1) -0.014(1)	0.613(1) 0.653(1) 0.655(1) 0.650(1) 0.627(1) 0.627(1) 0.694(1) 0.750(1) 0.776(1) 0.745(1) 0.686(1) 0.467(5) 0.433(1)	-0.034(1) -0.016(1) 0.099(1) 0.214(1) 0.208(1) 0.203(1) 0.223(1) 0.254(1) 0.254(1) 0.023(1) 0.002(1) 0.1669(8)	5.1(2) 6.5(3) 6.7(3) 7.9(4) 5.6(3) 3.1(2) 5.5(3) 6.5(3) 6.3(3) 5.1(3)	H5 H9 H10 H11 H12 H13 H21 H22 H23	0.1790 0.1487 0.4255 0.6197 0.6084 0.4107 -0.1377 -0.3434	0.2903 0.5312 0.5737 0.5177 0.3986 0.3404 0.5955 0.6458	0.0588 0.2761 0.2317 0.1859 0.1003 0.0669 -0.1227 -0.0955
022 023 024 025 030 031 032 033 034 035 01 022 03 034 035 01	-0.280(1) -0.313(1) -0.229(1) -0.099(1) 0.314(1) 0.314(1) 0.356(1) 0.369(1) 0.289(1) 0.0667(8) -0.045(1) -0.092(1) -0.014(1)	0.638(1) 0.655(1) 0.655(1) 0.627(1) 0.660(1) 0.694(1) 0.750(1) 0.776(1) 0.743(1) 0.686(1) 0.4657(5) 0.433(1)	-0.016(1) 0.099(1) 0.214(1) 0.208(1) 0.208(1) 0.223(1) 0.254(1) 0.355(1) ⁻ 0.023(1) 0.1609(8)	6.5(3) 6.7(3) 7.9(4) 5.6(3) 3.1(2) 5.5(3) 6.5(3) 6.3(3) 5.1(3)	H9 H10 H11 H12 H13 H21 H22 H23	0.1487 0.4255 0.6197 0.6084 0.4107 -0.1377 -0.3434	0.5312 0.5737 0.5177 0.3986 0.3404 0.5955 0.6458	0.2761 0.2317 0.1859 0.1003 0.0669 -0.1227 -0.0955
023 024 025 030 031 032 033 034 035 01 02 03 03 03 03 03 03 03 03 03 03 03 03 03	-0.313(1) -0.229(1) -0.299(1) 0.217(1) 0.229(1) 0.314(1) 0.365(1) 0.365(1) 0.369(1) 0.0867(8) -0.045(1) -0.092(1) -0.092(1)	0.655(1) 0.650(1) 0.627(1) 0.660(1) 0.750(1) 0.776(1) 0.743(1) 0.4467(5) 0.433(1)	0.099(1) 0.214(1) 0.208(1) 0.100(1) 0.223(1) 0.2254(1) 0.155(1) 0.023(1) 0.002(1) 0.1609(8)	6.7(3) 7.9(4) 5.6(3) 3.1(2) 5.5(3) 6.5(3) 6.3(3) 5.1(3)	H10 H11 H12 H13 H21 H22 H23	0.4255 0.6197 0.6084 0.4107 -0.1377 -0.3434	0.5737 0.5177 0.3986 0.3404 0.5955 0.6458	0.2317 0.1859 0.1003 0.0669 -0.1227 -0.0955
224 225 230 231 232 233 234 235 21 22 23 23 24	-0.229(1) -0.099(1) 0.217(1) 0.229(1) 0.314(1) 0.385(1) 0.385(1) 0.385(1) 0.289(1) 0.0867(8) -0.045(1) -0.092(1) -0.092(1)	0.650(1) 0.627(1) 0.660(1) 0.750(1) 0.750(1) 0.745(1) 0.686(1) 0.4467(5) 0.433(1)	0.214(1) 0.208(1) 0.100(1) 0.223(1) 0.254(1) 0.023(1) 0.002(1) 0.1609(8)	7.9(4) 5.6(3) 3.1(2) 5.5(3) 6.5(3) 6.3(3) 5.1(3)	H11 H12 H13 H21 H22 H23	0.6197 0.6084 0.4107 -0.1377 -0.3434	0.5177 0.3986 0.3404 0.5955 0.6458	0.1859 0.1003 0.0669 -0.1227 -0.0955
25 30 331 332 333 334 335 34 335 31 22 33 34 335 34	-0.099(1) 0.217(1) 0.229(1) 0.314(1) 0.385(1) 0.369(1) 0.0867(8) -0.045(1) -0.092(1) -0.014(1)	0.627(1) 0.660(1) 0.694(1) 0.750(1) 0.776(1) 0.745(1) 0.686(1) 0.4467(5) 0.433(1)	0.208(1) 0.100(1) 0.223(1) 0.254(1) 0.155(1) ⁻ 0.023(1) 0.002(1) 0.1609(8)	5.6(3) 3.1(2) 5.5(3) 6.5(3) 6.3(3) 5.1(3)	H12 H13 H21 H22 H23	0.6084 0.4107 -0.1377 -0.3434	0.3986 0.3404 0.5955 0.6458	0.1003 0.0669 -0.1227 -0.0955
330 331 332 333 334 335 311 12 13 14	0.217(1) 0.229(1) 0.314(1) 0.385(1) 0.369(1) 0.0867(8) -0.045(1) -0.092(1) -0.014(1)	0.660(1) 0.694(1) 0.750(1) 0.776(1) 0.743(1) 0.686(1) 0.4467(5) 0.433(1)	0.100(1) 0.223(1) 0.254(1) 0.155(1) 0.023(1) 0.002(1) 0.1609(8)	3.1(2) 5.5(3) 6.5(3) 6.3(3) 5.1(3)	H13 H21 H22 H23	0.4107 -0.1377 -0.3434	0.3404 0.5955 0.6458	-0.1227 -0.0955
331 332 333 334 335 31 32 31 32 33	0.229(1) 0.314(1) 0.385(1) 0.369(1) 0.289(1) 0.0867(8) -0.045(1) -0.092(1) -0.014(1)	0.694(1) 0.750(1) 0.776(1) 0.743(1) 0.686(1) 0.4467(5) 0.433(1)	0.225(1) 0.254(1) 0.155(1) 0.023(1) 0.002(1) 0.1609(8)	5.5(3) 6.3(3) 5.1(3)	H22 H23	-0.3434	0.6458	-0.0955
552 333 334 335 31 32 13 13	0.314(1) 0.385(1) 0.289(1) 0.0867(8) -0.045(1) -0.092(1) -0.014(1)	0.75(1) 0.776(1) 0.743(1) 0.686(1) 0.4467(5) 0.433(1)	0.254(1) 0.155(1) 0.023(1) 0.002(1) 0.1609(8)	6.3(3) 5.1(3)	122	-0.5454	0.6458	-0.0955
335 334 335 31 32 33 34	0.369(1) 0.289(1) 0.0867(8) -0.045(1) -0.092(1) -0.014(1)	0.778(1) 0.743(1) 0.686(1) 0.4467(5) 0.433(1)	0.023(1) 0.002(1) 0.1609(8)	5.1(3)		- 1.1 - 4.1 - 1.2 - 6.1	0 6728	0 1073
335 31 32 33 34	0.289(1) 0.0867(8) -0.045(1) -0.092(1) -0.014(1)	0.445(1) 0.4467(5) 0.433(1)	0.002(1) 0.1609(8)	5.1(5)	12)	-0.2505	0.6620	0.1012
33 32 33 34	0.0867(8) -0.045(1) -0.092(1) -0.014(1)	0.4467(5) 0.433(1)	0.1609(8)	3 7(2)	124	-0.2555	0.6214	0.2946
32 33 34	-0.045(1) -0.092(1) -0.014(1)	0.433(1)	0.1003(01	2.6(2)	H51	0.1861	0.6750	0.3036
!3 !4	-0.092(1) -0.014(1)		0.164(1)	4.3(2)	H32	0.3170	0.7766	0.3381
14	-0.014(1)	0.366(1)	0.125(1)	5,1(2)	H33	0.4451	0.8143	0.1745
		0.316(1)	0.087(1)	4.8(2)	H34	0.4170	0.7629	-0.0485
15	0.121(1)	0.328(1)	0.087(1)	4.2(2)	H35	0,2880	0.6625	-0.0884
56	0.1688(8)	0.3937(5)	0,1228(9)	2.8(2)	H102	0.0695	0.5127	-0.4675
97	0.298(1)	0.420(1)	0.131(1)	3.3(2)	H103	-0,1112	0.5830	-0.4059
8	0.3013(8)	0.4887(5)	0.1759(8)	2.6(2)	H104	-0.0757	0.6908	-0.3220
9	0.1619(9)	0.5115(5)	0.1890(9)	2.9(2)	H105	0.1283	0.7468	-0.3105
10	0.422(1)	0.526(1)	0.197 (1)	3.6(2)	H109	0.3280	0.5440	-0.5464
211	0.533(1)	ം.492(1)	0,169(1)	4.3(2)	H110	0.6047	0.5927	-0.4932
012	0.533(1)	0.425(1)	0.123(1)	4.9(2)	H111	0.7045	0.7020	-0.4503
13	0.415(1)	0.387(1)	0.106(1)	4.3(2)	H112	0.5919	0.7944	-0,3635
312	0.3868(3)	0.4904(2)	-0.3245(3)		H113	0.3718	0.7827	-0.3220
02	0.3809(6)	0.5210(3)	-0.1694(6)		H41	0.5201	0.4316	-0.5347
040	0.557(1)	0.464(1)	-0.340(1)	3.9(2)	H42	0.7452	0.4111	-0.5768
C4 1	0.592(1)	0.439(1)	-0.463(1)	5.0(3)	H43	0.8991	0.4108	-0.3844
342	0.724(1)	0.421(1)	-0.482(1)	6.0(3)	H 44	0.8578	0.4549	-0.1704
345 144	0.812(1)	0.428(1)	-6.374(1)	6.3(3)	H45	0.6268	0.4839	-0.1470
144 145	0.786(1)	0.420(1)	-0.250(1)	(+5(5)	H51	0.2620	0.4156	-0.5685
240 160	0.055(1)	0.470(1)	-0.254(1)	5.6(5)	152	0.1184	0.2622	-0.6056
990 951	(12286(9)	0.410(1)	-0.4917(9)	3 1(2)	H57	0.0986	0.2002	-0.2043
352	0.142(1)	0.340(1)	-0.515(1)	3.8(2)	1154	0.2407	0.4010	-0.1640
053	0.094(1)	0.308(1)	-0.408(1)	4 3(2)	1177	0.2407	0.4010	-0,1040
054	0.127(1)	0.331(1)	-0.283(1)	5.0(2)				
055	0.214(1)	0.385(1)	-0.255(1)	4,5(2)				
0101	0.204(1)	0.592(1)	-0.426(1)	2.8(2)				
0102	0.083(1)	0.560(1)	-0.433(1)	3.3(2)				
0103	0.022(1)	0.601(1)	-0.396(1)	4.0(2)				
2104	-0.002(1)	0.668(1)	-0.353(1)	4.2(2)				
2105	0.114(1)	0.699(1)	-0.342(1)	3.9(2)				
3106	0.219(1)	0,661(1)	-0,383(1)	3.1(2)				
0107	0.356(1)	0.680(1)	-0.386(1)	3.4(2)				
2108	0.424(1)	0.624(1)	-0.433(1)	3.5(2)				
3109	0.3336(8)	0,5623(5)	-0.4528(9)	2.6(2)				
0110	0.556(1)	0.632(1)	-0.456(1)	4.4(2)				
2111	0.614(1)	0.695(1)	-0.431(1)	4.6(2)				
3112	0.550(1)	0.750(1)	-0.381(1)	5.2(5)				
2112	0.422(1)	0.744(1)	-0.555(1)	4.7(2)				
Aton	n ¹³ 11	в ₂₂	B ₃₃	^B 12	B ₁₃	B ₂₃		
Si1	2.6(1)	3.0(1)	2.8(1)	0.4(1)	0.4(1)	-0.0(1)		
01	4.8(3)	3.8(3)	3.0(3)	0.5(3)	0.8(3)	-0.7(3)		
\$12	3,2(1)	2.9(1)	3.1(1)	0.5(1)	0.7(1)	-0,0(1)		
02	5.0(3)	4.5(3)	2.4(3)	0.4(3)	0.0(3)	-0.5(3)		

Tab. 3. Atomparameter von **6a**. Für die Wasserstoffatome wurden konstante isotrope Temperaturfaktoren ($B = 5.5 \cdot 10^4$ pm²) verwendet

Fluoren-Derivaten (2-Amino-7-nitro-^{12a)} bzw. 4-Acetylaminofluoren ^{12b)}); lediglich die C6–C7-Abstände sind mit 144.1 (**3b**) bzw. 143.6 pm (**6a**) leicht verkürzt (gegenüber 148.6¹¹⁾, 145.7^{12a)} bzw. 147.5^{12b)} pm). Anders als in Fluoren bzw. den genannten Derivaten sind die C₁₃-Gerüste in **3b** und **6a** nicht planar. C9 liegt in **3b** mit 11.7 (4) pm bzw. in **6a** mit 8.7 (8) pm deutlich über der Ebene der übrigen vier Atome des Fünfrings. Während diese Ebene in **6a** mit den besten Ebenen der beiden Sechsringe Winkel von durchschnittlich 1.8° einschließt, beträgt der entsprechende Winkel bei **3b** 4.0°. Der sich bei **3b** daraus ergebende Winkel von 7.9° zwischen den beiden Sechsring-Normalen ist deutlich größer als bei **6a** (3.7°) und den Vergleichsverbindungen ($<2^{\circ 11}$, $4.0^{\circ 12a}$ bzw. $1.0^{\circ 12b}$). Da diese Faltung weg vom Tris(trimethylsilyl)silyl-Rest erfolgt ist anzunehmen, daß sterische Wechselwirkungen für diesen Effekt verantwortlich sind.

		Abstände (in pm)				
<u>3</u> b		6a (Molekü	1 1)	6a (Molekül 2)			
C9 - C1	149.9(7)	C9 - C1	147.9(13)	C109 - C101	150.4(12)		
09 - 08	150.6(6)	C9 - C8	151.9(12)	0109 - 0108	150.4(13)		
C1 - C6	140.8(6)	C1 - C6	140.3(12)	C101 - C106	139.8(14)		
C6 - C7	144.1(7)	06 - 07	141.9(13)	0106 - 0107	145.6(13)		
C7 - C8 139.9(7)		C7 - C8	138.9(14)	0107 - 0108	140.3(14)		
restl. C - C (Fluorenyl):		restl, C - C (F	luorenyl):	restl. C = C (Fluorenyl):			
(Nittel) 137.7		(Hittel)	139.2	(Mittel)	138.4		
C9 - Si1	194.7(4)	09 - Sil	187,9(9)	C109 - Si2	191.5(9)		
Sil - Si2	236.7(2)	Si1 - 01	162.9(6)	Si2 - 02	164.8(7)		
Si1 - Si3	237.5(2)		0102 29	1.2(9)			
Si1 - Si4	235.6(2)	Si1 - C20	187.1(10)	Si2 - C40	184.8(11)		
Si - C _{No} (Mitte	1) 185.6	Si1 - 030	184.4(10)	Si2 - C5C	186.4(10)		
110		C - C (Fhenyl)		C - C (Phenyl)			
		(Mittel)	138.2	(Mittel)	137.6		
		Winkel ((in Grad)				
žþ		<u>6</u> a_ (No	olekül 1)	6a (Nolekül 2)			
01 - 09 - 08	102.5(4)	01 - 09 - 08	102.6(7)	0101 - 0109 -	0108 103.2(7		
09 - 01 - 06	110.0(4)	09 - 01 - 06	110.3(8)	0109 - 0101 -	0106 110.0(8		
01 - 06 - 07	108,2(4)	01 - 06 - 07	108.0(8)	0101 - 0106 -	0107 108.1(8		
C6 - C7 - C8	109.3(4)	06 - C7 - C8	110.5(8)	C106 - C107 -	0108 109.4 (8		
07 - 08 - 09	109.4(4)	C7 - C8 - C9	108,2(8)	C107 - C108 -	0109 109.0(8		
01 - 09 - Sil	112.3(3)	C1 - C9 - Si1	113.7(6)	C101 - C109 -	Si2 110.5(6		
08 - 09 - Sil	111.5(3)	C8 - C9 - Sil	110,8(6)	C108 - C109 -	Si2 111.1(6		
C9 - Si1 - Si2	110,2(2)	09 - Sil - 01	106.5(4)	C109 - Si2 -	02 108.5(4		
09 - Si1 - Si3	109.1(2)	C9 - Sil - C2	20 110.5(4)	C109 - Si2 -	040 110.2(4		
C9 - Si1 - Si4	109.7(2)	09 - Sil - 03	50 110.9(4)	C109 - Si2 -	050 105.9(4		
Si2 - Si1 - Si3	107.58(8)	01 - Sil - Ca	20 111.1(4)	02 - Si2 - C4	0 108.1(4		
S12 - S11 - S14	109.59(8)	01 - Si1 - C3	50 109.6(4)	02 - Si2 - C5	0 111.5(4		
Si3 - Si1 - Si4	110.65(8)	020 - Si1 - 0	108.3(4)	C40 - Si2 - C	50 112.6(5		
Sil - Si - C _{Me} (Mi	ttel) 111.6						
C _{Me} - Si - C _{Me} (Mi	ttel) 107.4						
C122/79 Tab 4							

Tab. 4. Die wichtigsten intramolekularen Abstände und Winkel der Fluorenylsilane 3b und 6a

Keine wesentliche Abweichung von einer ideal tetraedrischen Koordination ist beim Si1-Atom in **3b** festzustellen. Die Si-1-Si-Bindungslängen sind untereinander gleich und entsprechen den Mittelwerten in Si(SiMe₃)₄ (236.1 pm)¹³⁾ bzw. in (CO)₅CrC-(C₄H₃O)OSi(SiMe₃)₃ (236.3 pm)¹⁴⁾. Dagegen ist die C9-Si1-Bindung gegenüber theoretischen und beobachteten Si-C(sp³)-Abständen¹⁵⁾ mit 194.7 pm deutlich verlängert. Da dieser Effekt in der Struktur von **6a** nicht mehr auftritt, muß man davon ausgehen, daß die Abstandsverlängerung allein von den Trimethylsilyl-Substituenten verursacht wird (vgl. Lit.¹⁴⁾). Ob elektronische oder sterische Gründe dafür verantwortlich sind, läßt sich im Augenblick nicht entscheiden.

Der Si-O-Abstand in **6a** (163.9 pm) entspricht dem in anderen kristallographisch untersuchten Silanolen¹⁶⁾. In diesen sind im Kristall jeweils zwei oder mehrere Moleküle über Wasserstoff-Brücken miteinander verknüpft, wobei sich die daran beteiligten Sauerstoff-Atome auf 256-272 pm annähern. In **6a** beträgt der Abstand zwischen den Sauerstoffatomen der beiden Moleküle in der asymmetrischen Einheit 291.2 pm (Winkel Si-O…O 121.3 (3) bzw. 116.1° (3)). Trotzdem glauben wir, daß die beiden Moleküle auch in Lösung (vgl. ¹H-NMR-Spektren) durch Wasserstoff-Brücken verbunden sind, möglicherweise der Art

(für eine Diskussion der Kriterien für das Vorliegen von H-Brücken vgl. Lit.¹⁷⁾).

Wir danken Herrn Prof. Dr. E. O. Fischer, der Deutschen Forschungsgemeinschaft, Bonn-Bad Godesberg und der BASF AG, Ludwigshafen, für die Unterstützung dieser Arbeit, den Herren Dr. F. R. Kreißl und W. Uedelhoven für die Aufnahme der Massenspektren.

Experimenteller Teil

Alle Arbeiten wurden unter Ausschluß von Feuchtigkeit in trockenem Stickstoff durchgeführt. Die verwendeten Lösungsmittel waren nach üblichen Methoden getrocknet. Die Schmelzpunkte sind nicht korrigiert, die Ausbeuten beziehen sich auf analysenreine Produkte.

1) Chlor-9-fluorenyldiphenylsilan (3a): Die Lösung von 16.5 g (100 mmol) Fluoren in 200 ml THF wird mit 0.7 g (100 mmol) fein geschnittenem Lithium versetzt und 24 h bei Raumtemp. gerührt. Man filtriert von ungelöstem Lithium ab und tropft die orangebraune Lösung während 24 h zu einer heftig gerührten Lösung von 25.3 g (100 mmol) Dichlordiphenylsilan in 700 ml Ether. Das Gemisch wird weitere 24 h bei Raumtemp. gerührt. Anschließend werden die Lösungsmittel i. Wasserstrahlvak. abgezogen. Der Rückstand wird mit 250 ml Hexan aufgenommen und die Lösung heiß vom ungelösten LiCl über eine G3-Fritte filtriert. Beim Abkühlen auf -20 °C fällt ein blaßgelber Feststoff aus, der nochmals aus Hexan umkristallisiert und i. Hochvak. getrocknet wird. Ausb. 18.7 g (49%), Schmp. 114 °C.

C₂₅H₁₉ClSi (382.9) Ber. C 78.39 H 5.00 Si 7.33 Gef. C 76.48⁴⁸⁾ H 5.13 Si 7.32 Molmasse 382 (MS, rel. ³⁵Cl)

2) 9-Fluorenyltris(trimethylsilyl)silan (3b): Zu einer Lösung von 5.0 g (15.3 mmol) Bromtris-(trimethylsilyl)silan¹⁹ in 50 ml THF wird während 1 h eine Lösung von 15.3 mmol 9-Fluorenyllithium in 40 ml THF [s. vorstehend 1)] getropft. Anschließend wird 30 min unter Rückfluß erhitzt und nach Abkühlen auf Raumtemp. mit 50 ml Ether und 80 ml Hexan versetzt. Nach 12 h Rühren bei Raumtemp. werden die Lösungsmittel i. Wasserstrahlvak. abgezogen. Der Rückstand wird wie bei 1) aufgearbeitet und gereinigt. Aus Hexan große farblose Tafeln, Ausb. 4.72 g (75%), Schmp. 141 - 144 °C.

C₂₂H₃₆Si₄ (412.2) Ber. C 64.00 H 8.78 Si 27.21 Gef. C 64.13 H 8.85 Si 27.5 Molmasse 412 (MS)

3) 9-Fluorenyldiphenylsilan (4): Eine Mischung von 5.26 g (13.8 mmol) 3a und 0.23 g (6.0 mmol) LiAlH₄ in 50 ml THF wird 10 h bei Raumtemp. gerührt. Der ausgefallene Niederschlag wird dann auf einer G3-Fritte abfiltriert und das Filtrat i. Wasserstrahlvak. vom Lösungsmittel befreit. Durch Umfällen des Rückstandes aus THF/Hexan und anschließendem Umkristallisieren aus Hexan erhält man große farblose Kristalle. Ausb. 3.85 g (80%), Schmp. 138 – 139 °C.

C₂₅H₂₀Si (348.4) Ber. C 86.16 H 5.78 Si 8.06 Gef. C 84.69¹⁸⁾ H 5.85 Si 8.20 Molmasse 348 (MS)

4) 9-Fluorenyl(4-methylphenylsulfonyl)diphenylsilan (5): 25 g (14.5 mmol) p-Toluolsulfonsäure werden mit KOH in wäßriger Lösung (200 ml) neutralisiert. Dazu gibt man 22.4 g (13.2 mmol) AgNO₃ und läßt aus heißem Wasser auskristallisieren. Das Silbertosylat wird zweimal mit Wasser gewaschen und i. Hochvak. getrocknet.

Zur Lösung von 3.82 g (10 mmol) 3a in 30 ml THF werden 3.0 g (10.8 mmol) Silbertosylat gegeben. Das Gemisch wird bei 50 °C 1 h stark gerührt, wobei das Tosylat in Lösung geht und AgCl ausfällt. Letzteres wird über eine G3-Fritte abfiltriert, das Filtrat wird vom Lösungsmittel befreit. Umfällen des Rückstandes aus THF/Hexan und anschließendes zweimaliges Umkristallisieren aus THF gibt farblose Kristalle, die sich bei Raumtemp. langsam zersetzen und daher bei -78 °C aufbewahrt werden. Ausb. 2.7 g (40%), Schmp. 168 °C (Zers.).

 $C_{32}H_{26}O_3SSi$ (518.6) Ber. C 74.10 H 5.05 Si 5.41 Gef. C 73.85 H 5.11 Si 5.33 Molmasse 518 (MS)

5) 9-Fluorenyldiphenylsilanol (6a): Die Suspension von 0.50 g (1.3 mmol) 3a in 100 ml Wasser wird 2 h unter Rückfluß erhitzt. Nach Abkühlen wird der Feststoff abfiltriert, mit Wasser gewaschen und bei 140 °C getrocknet. Ausb. 0.47 g (99%), Schmp. 170–173 °C.

C₂₅H₂₀OSi (364.4) Ber. C 81.13 H 5.57 Si 8.25 Gef. C 81.59 H 5.92 Si 8.50 Molmasse 364 (MS)

6) Ethoxý-9-fluorenyldiphenylsilan (**6b**): Zu einer Lösung von 0.53 g (1.4 mmol) **3a** in 20 ml THF wird eine Lösung von 1.39 mmol NaOC₂H₅ in 5 ml Ethanol gegeben. Nach 12 stdg. Rühren bei Raumtemp. werden die Lösungsmittel abgezogen. Der Rückstand wird in Hexan aufgenommen und die Lösung von ungelöstem NaCl filtriert. Aus dem Filtrat kristallisiert **6b** beim Abkühlen auf -78 °C. Ausb. 0.54 g (98%), Schmp. 85–109 °C.

 $\begin{array}{c} C_{27}H_{24}OSi~(392.5) & \text{Ber. C } 82.59 \ \text{H} \ 6.16 \ Si~7.16 \\ & \text{Gef. C } 82.32 \ \text{H} \ 6.25 \ \text{Si} \ 7.3 \ \text{Molmasse} \ 392~(\text{MS}) \end{array}$

7) Umsetzung von 6b mit überschüssigem Natriumethylat: Zu einer Lösung von 0.40 g (1.02 mmol) 6b in 10 ml THF und 5 ml wasserfreiem Ethanol wird 1 mmol $NaOC_2H_5$ gegeben. Es wird 3 Tage bei Raumtemp. gerührt. Dabei färbt sich die Lösung schwach braun. Anschließend werden die Lösungsmittel abgezogen. Der Rückstand wird mit Hexan aufgenommen und filtriert. Das vom Lösungsmittel befreite Filtrat zeigt IR- und ¹H-NMR-Spektren, die mit denen eines Gemisches von authentischem Fluoren und Diethoxydiphenylsilan übereinstimmen.

8) (9-Brom-9-fluorenyl)chlordiphenylsilan (7): Die Lösung von 5.21 g (13.65 mmol) 3a in 60 ml CCl_4 wird nach Zugabe von 2.43 g (13.65 mmol) N-Bromsuccinimid 12 h unter Rückfluß erhitzt. Nach Abkühlen wird über eine G3-Fritte filtriert und i. Hochvak. eingeengt. Man erhält ein orangefarbenes zähes Öl, das noch Reste CCl_4 enthält. Diese werden durch mehrmaliges Zugeben

und Abziehen von Cyclohexan entfernt. Durch Ausfrieren aus Cyclohexan bei -78 °C erhält man 7 als orangefarbenes Öl. Ausb. 4.41 g (70%).

C₂₅H₁₈BrClSi (461.9) Ber. C 65.01 H 3.93 Si 6.08

Gef. C 65.27 H 4.14 Si 5.82 Molmasse 460 (MS, rel. ³⁵Cl und ⁷⁹Br)

Literatur

- ¹⁾ L. E. Gusel'nikov, N. S. Nametkin und V. M. Vdovin, Acc. Chem. Res. 8, 18 (1975).
- ²⁾ ^{2u} P. H. Blustin, J. Organomet. Chem. **105**, 161 (1976). ^{2b)} Y. A. Ustynyuk, P. I. Zakharov, A. A. Azizov, G. A. Shchembelov und I. P. Gloriozov, ebenda **96**, 195 (1975). ^{2c)} M. D. Curtis, ebenda **60**, 63 (1973). ^{2d)} R. Damrauer und D. R. Williams, ebenda **66**, 241 (1974). ^{2e)} M. J. S. Dewar, D. H. Lo und C. A. Ramsden, J. Am. Chem. Soc. **97**, 1311 (1975). ²ⁱ⁾ O. P. Strausz, L. Gammie, G. Theodorakoupoulos, P. G. Mezey und I. G. Czismadia, ebenda **98**, 1622 (1976). ^{2w} R. Ahlrichs und R. Heinzmann, ebenda **99**, 7452 (1977).
- ³⁾ A. W. Johnson, Ylid Chemistry, Academic Press, New York, London 1966.
- ⁴⁾ N. Wiberg und G. Preiner, Angew. Chem. 89, 343 (1977); Angew. Chem., Int. Ed. Engl. 17, 362 (1977).
- ⁵⁾ T. J. Barton und D. S. Banasiak, J. Am. Chem. Soc. 99, 5199 (1977).
- ⁶⁾ P. Boudjouk, J. R. Roberts, C. M. Golino und L. H. Sommer, J. Am. Chem. Soc. 94, 7926 (1972).
 ⁷⁾ ^{7a)} C. Eaborn und R. M. Walton, J. Chem. Soc., Chem. Commun. 1975, 937. ^{7b)} R. W. Bott, C. Eaborn und T. W. Swaddle, J. Chem. Soc. 1963, 2342. ^{7c)} C. Eaborn und R. A. Shaw, ebenda 1955, 1420. ^{7d)} H. Gilman, A. G. Brook und L. S. Miller, J. Am. Chem. Soc. 75, 4531 (1953). ^{7e)} R. Gilman, R. A. Benkeser und G. E. Dunn, ebenda 72, 1689 (1950). ^{7t)} M. T. Reetz, N. Greif und M. Kliment, Chem. Ber. 111, 1095 (1978), und die dort zit. Lit.
- ⁸⁾ ^{8a)} C. N. R. Rao, Chemical Applications of the Infrared Spectroscopy, Academic Press, New York, London 1963. ^{8b)} F. J. Bajer in Progress in Infrared Spectroscopy, Vol. 2, Plenum Press, New York 1964.
- ⁹⁾ B. Y. K. Ho, L. Spialter und L. D. Smithson, Org. Mass Spectrom. 10, 361 (1975).
- ¹⁰⁾ J. F. Bunnett, Angew. Chem. 74, 731 (1962); Angew. Chem., Int. Ed. Engl. 1, 225 (1962).
- ¹¹⁾ D. M. Burns und J. Iball, Proc. R. Soc. London, Ser. A 227, 200 (1965).
- ¹²⁾ ^{12a} L. Fallon III und H. L. Ammon, J. Cryst. Mol. Struct. 4, 63 (1974). ^{12b)} M. van Meerssche, G. Germain, J. P. Declercq und R. Touillaux, Cryst. Struct. Comm. 8, 119 (1979).
- ¹³⁾ L. S. Bartell, F. B. Clippard und T. L. Boates, Inorg. Chem. 9, 2436 (1970).
- 14) U. Schubert, M. Wiener und F. H. Köhler, Chem. Ber. 112, 708 (1979).
- ¹⁵⁾ L. Pauling, Die Natur der Chemischen Bindung, 3. Aufl., S. 221, Verlag Chemie, Weinheim 1973.
- ¹⁶⁾ ^{16a)} M. Kakudo und T. Watase, J. Chem. Phys. **21**, 167 (1953). ^{16b)} N. Kasai und M. Kadudo, Bull. Chem. Soc. Jpn. **27**, 605 (1954). – ^{16c)} L. E. Alexander, M. G. Northolt und R. Engmann, J. Phys. Chem. **71**, 4298 (1967).
- ¹⁷⁾ G. A. Jeffrey und S. Takagi, Acc. Chem. Res., 11, 264 (1978).
- ¹⁸⁾ Schwierigkeiten wegen Carbidbildung, vgl. H. Schmidbaur und W. Wolf, Chem. Ber. 108, 2842, 2851 (1975).
- ¹⁹⁾ H. Bürger und W. Kilian, J. Organomet. Chem. 18, 299 (1969).

[122/79]